EECS4315 Mission-Critical Systems

Lecture Notes

Winter 2023

Jackie Wang

Lecture 1 - January 10

Syllabus \& Introduction

Safety-Critical Systems
Verification vs. Validation
Theorem Proving vs. Model Checking
TLA+

$\xrightarrow{\text { Logic covered }}$

Lecture 2 - January 12

Introduction

Safety- vs. Mission-Critical Systems
Formal Methods
Industrial Standards
Verification vs. Validation

SCS
\rightarrow auto-plot / anto-diding twaflic light / tràm gato air bag deploment

OPG
\rightarrow Ontario Poung Ger.
elevator / escalator \rightarrow Dallogton Jmitlow systions.
impule dector / pactemaker
nuclear power plant / shotdown system

Precise math.
E- 54312
\rightarrow no scope of multiple intapuetations. NAT
\rightarrow code: may be precise but too low level!

Complete
Ls no missing cases.

$\left(P_{1}\right)$ System s is mission aritial
$\left(P_{2}\right) S_{\text {system }} s$ is malety artical
(1) $P_{1} \equiv P_{2}$
(3) $P_{2} \Rightarrow P_{1}$ alweys e.g. fanarial wors wite. the race
splowne mite. missan-
peremadrer

Mission-Critical vs. Safety-Critical

Safety critical

When defining safety critical it is beneficial to look at the definition of each word independently. Safety typically refers to being free from danger, injury, or loss. In the commercial and military industries this applies most directly to human life. Critical refers to a task that must be successfully completed to ensure that a larger, more complex operation succeeds. Failure to complete this task compromises the integrity of the entire operation. Therefore a safety-critical application for an RTOS implies that execution failure or faulty execution by the operating system could result in injury or loss of human life.

Safety-critical systems demand software that has been developed using a well-defined, mature software development process focused on producing quality software. For this very reason
3342: theopen proving
4315: model chedring.
the DO-178B specification was created. DU-1/8B defines the guidelines for development of aviation software in the USA. Developed by the Radio Technical Commission for Aeronautics (RTCA), the DO-178B standard is a set of guidelines for the production of software for airborne systems. There are multiple criticality levels for this software (A, B, C, D, and E).

These levels correspond to the consequences of a software failure:

Safety-critical software is typically DO-178B level A or B. At these higher levels of software criticality the software objectives defined by DO-178B must be reviewed by an independent party and undergo more rigorous testing. Typical safety-critical applications include both military and commercial flight, and engine controls.

Mission critical

A mission refers to an operation or task that is assigned by a higher authority. Therefore a mission-critical application for an RTOS implies that a failure by the operating system will prevent a task or operation from being performed, possibly preventing successful completion of the operation as a whole.

Mission-critical systems must also be developed using well-defined, mature
software development processes. Therefore they also are subjected to the rigors of DO-178B. However, unlike safety-critical applications, missioncritical software is typically DO-178B level C or D. Mission-critical systems only need to meet the lower criticality levels set forth by the DO-178B specification.

Generally mission-critical applications include navigation systems, avionics display systems, and mission command and control.
safery (imvanant) properery

MLart
axume I satisted in S_{τ}
prove I_{Q} satasted in S_{T+1} acroding to Lefope-afiter predrate of
of Mhat
(veritecation)

Certifying_Systems: Assurance Cases

Source: https ://resources.sei.cmu.edu/asset_files/whitepaper/2009_019_001_29066.pdf

Lecture 3 - January 17

Introduction, Math Review

Model-Based Development
TLA+
Logical vs. Programming Operators

Announcement

- Labl released
+ tutorial videos
+ problems to solve

Software Development Process Chare $\{\cdots\}$ or $\{\cdots\}$

Correct by Construction

Correct by Construction: Bridge Controller System

Correct by Construction: File Transfer Protocol

stel of state space:
model checkers an gemeral do not support verificarion on real numbers. e.g. $R=0 . .1$ fintite disange 2 possibatitices. $\mathrm{eg} . R=0.0 \ldots 1.0$ infincte, Continuous

TLA+ Toolbox

TLA + (Temporal Logic of Actions) is a high-levell language for modeling programs and systems-especially concurrent and distributed ones. It's based on the idea that the best way to describe things precisely is with simple mathematics.
TLA+ and its tools are useful for eliminating fundamental design errors, which are hard to find and expensive to correct in code.

TLA+ is a language for modeling software above the code level and hardware above the circuit level.
It has an IDE (Integrated Development Environment) for writing models and running tools to check them. The tool most commonly used by engineers is the TLC model checker, but there is also a proof checker.
TLA+ is based on mathematics and does not resemble any programming language. Most engineers will find PlusCal , described below, to be the easiest way to start using TLA+.

Prog Test	- data sheet
	- PF sheet.

format: write Pluslal algorithms \& $\xrightarrow[\longrightarrow]{\text { properties }}$
\rightarrow arr. or temporal
everet-b decruxpran bul might be given a flawed module

Logical Operator vs. Programming_Operator

p	q	$p \wedge q$	$p \vee q$
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

$$
((p \wedge q) \wedge r)
$$

Q. Are the \wedge and v operators equivalent to, respectively, \&\& and II in Java?
(el $\& \& \quad e z$
(e) $\| e^{2}$ if evacuated to (F)
ζ it evaluated to (1) procedure?
ez will not be evaluated \Rightarrow overall resile: (F)

Lecture 4 - January 19

Math Review
Propositional Logic, Predicate Logic

Announcement

- Tuesday's lecture recording mossing!

Lab1 released

+ tutorial videos
+ problems to solve

Implication \approx Whether a Contract is Honoured

$p \Rightarrow q$ (T) if the contract is not breached
(Cl) $p=T \quad q=T$
(cz) $p=T \quad q=F$
(cz) $p=F \quad q=T$
(cu) $P=F \quad q=F$.

Which of the following expressions are equivalent to $p \Rightarrow q$
(1) q if p
(2) q only if $P X$

$$
\Leftrightarrow \quad p \Leftrightarrow q
$$

$$
\begin{aligned}
& \neg(p) q)=\operatorname{sp} \vee \neg q q
\end{aligned}
$$

$$
\begin{aligned}
& y<23 \wedge y \geqslant 46 \Rightarrow x \leq 0 \vee x>23 \\
& \text { e.g. } x>0 \wedge x \leqslant 23 \Rightarrow y \geqslant 23 \vee y<46 \\
& \text { Convere } \\
& \text { Invere: } 1 p \Rightarrow \neg q \Rightarrow y \geqslant 23 \vee y<46 \Rightarrow x>0 \wedge x \leqslant 33 \\
& \text { equalo } \frac{(x>0 \wedge \wedge x \leq 23)}{} \Rightarrow \neg(y \geqslant 23 \vee y<4 b) \\
& \equiv\{\mathrm{Pe} \operatorname{Mog} \mathrm{ga}\} \\
& x \leq 0 \vee x>23 \Rightarrow y<23 \wedge y \geqslant 46
\end{aligned}
$$

Prove $p \Leftrightarrow q$
Need to poal if ary if
(1) $\underset{\sim}{\operatorname{Rag}} \underset{q \rightarrow p}{ }$ Pif q
(2) $p \Rightarrow q \quad p$ olly if q

Identity

$$
\text { as it: } \rightarrow P
$$

Tme $\wedge p \equiv P$
Rereedence of opeators

$$
\begin{aligned}
& \text { as it: } \\
& (\text { Tome } \Rightarrow p)=p
\end{aligned}
$$

false $\vee P \equiv P$
Zero

$$
\begin{aligned}
& \text { false } \Rightarrow p \equiv \text { Tme } \\
& \text { false } \wedge p \equiv \text { talse } \\
& \text { twe } \vee \vDash \equiv \text { tme }
\end{aligned}
$$

Predicate Logic: Quantifiers

- syntax
- base cases in programming

Rodin

$$
\begin{aligned}
& \text { (! }) x: R(x) \Rightarrow P(x) \\
& \exists \Perp x: R(x) \wedge P(x) \\
& \checkmark \pi A+
\end{aligned}
$$

$$
\begin{aligned}
& \text { IE } x \text { lin Nat, } y \operatorname{los} \operatorname{Int}\left(\bigodot_{i} P(x)\right.
\end{aligned}
$$

V ratural *'s

$$
\rightarrow 0,1,2,3, \ldots+\infty
$$

\mathbb{Z} integers

$$
L-\infty, \cdots, 0, \cdots+\infty
$$

Logical Quantifiers: Examples

$\checkmark \forall \mathrm{i} \bullet \mathrm{i} \in \mathbb{N} \Rightarrow \mathrm{i} \geq 0$

$$
\begin{aligned}
& \in \mathbb{N} \Rightarrow i \geq 0 \\
& { }_{3}=1, I_{3}, \ldots \text { all berets in rage } \geqslant 0
\end{aligned}
$$

$$
\forall i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \Rightarrow i\langle j \vee i\rangle j
$$

$$
\exists i \bullet \frac{i \in \mathbb{N}}{0 \in N} \triangleq \frac{i \geq 0}{w_{i}+\text { ness }:} \quad \text { T^T}=T
$$

(ヨ) $i \bullet i \in \mathbb{Z} \wedge i \geq 0$
$\exists i, j \bullet i \in \mathbb{Z} \wedge j \in \mathbb{Z} \wedge(i<j \vee i>j)$
$\longrightarrow \quad i=1, \bar{j}=3$

Lecture 5 - January 24

Math Review
Logical Quantifications: Proof Strategies
Exercises

Announcement

- Lab1 Part 2 tutorial videos released
$+\approx 2$ hours
* debugging using labels, error trace, state graph
* PlusCal vs. Auto-Translated TLA+ Predicates
- Optional Textbook for Model Checking and Program Verification Logic in Computer Science:
Modelling and reasoning about systems by M. Huth and M. Ryan

Logical Quantifiers: Examples
How to prove $\forall i \bullet R(i) \Rightarrow P(i)$?
(11) Assume $R(\bar{\tau})$, prove $P(\tau)$
(2) Pware $1 R(\tau)$ (\approx empty avray) e.g. $R(\tau) \triangleq$

How to prove $\exists i \bullet R(i) \wedge P(i)$?

(1) Frad a witness s.t. $R(\bar{i}) \wedge P(\bar{c})$

How to disprove $\forall i \bullet R(i) \Rightarrow P(i)$?
(1) Gine a witwess/coulniter-exanude : $R(\tau)$

nadler (1) Show $\neg R(\tau)(\approx$ empty awray $)$
(2) $R(\tau) \wedge \neg P(\tau) \leftrightarrow$ for all i satistifng R.

Prove/Disprove Logical Quantification

- Prove or disprove: $\forall x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>0$.

$$
x \in 1 . .10 \text {, each }>0
$$

- Prove or disprove: $\forall x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \Rightarrow x>1$.
witness : 2
- Prove or disprove that $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>10$? max value is 10 but $10>10$ E.

Is the following statement correct:
10

- Prove or disprove: $\exists x \bullet(x \in \mathbb{Z} \wedge 1 \leq x \leq 10) \wedge x>1$.

We can just gigue a witness $x=1$.
Not correct! ai \exists is tull but $x=1$ not a valid witness $(1>1 \equiv F)$.
$\exists x \cdot x \in \operatorname{lin} \leqslant x \leqslant 0 \Rightarrow \frac{x}{1}>1$

$$
\equiv \exists x \cdot \operatorname{Tme} \wedge(I)
$$

$$
\begin{aligned}
\substack{\text { Tu } \\
\text { Tr } \\
=P} & \forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x) \\
& \forall x \cdot P(x) \equiv \neg \forall x \cdot \neg P(x) .
\end{aligned}
$$

Predicate Logic: Exercise 1

$$
N=\{0,1, \cdots,+\infty\}
$$

Consider the following predicate:

$$
\forall x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \Rightarrow x^{*} y>0
$$

Choose all statements that are correct.

1. It is a theorem, provable by $(5,4)$.
2. It is a theorem, provable by $(2,3)$.
3. It is not a theorem, witnessed by $(5,0)$. $5 \in N \wedge 0 \in \mathcal{A}$

X4. It is not a theorem, witnessed by $(12,-2)$.
$\Rightarrow 5 * 0>0$
F
5. It is not a theorem, witnessed by $(12,13)$.

$$
1 Z \in N \wedge-Z \in \mathbb{F} \Rightarrow 1 Z *-Z>0 \equiv(T) .
$$

$12 \in \mathbb{N} \wedge B \in N$
$\Rightarrow 12 * 13>0$

Consider the following predicate:

$$
\forall x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \Rightarrow x^{*} y \times 0
$$

Choose all statements that are correct.

$$
\begin{aligned}
& x: 0,1,2, \cdots,+\infty \\
& y: 0,1,2, \cdots+\infty \\
& 0,
\end{aligned}
$$

Case 1

$$
\begin{aligned}
x>0, y>0 & \Rightarrow x * y>0 \\
& \Rightarrow x * y \geqslant 0
\end{aligned}
$$

Case 2 $x \geqslant 0, y \geqslant 0$ if one or both is 0

$$
\Rightarrow x * y=0 \Rightarrow x * y \geqslant 0 .
$$

- An axiom is assumed to be true, with no need for proofs.
- A theorem is a Boolean expression that requires a proof.
$\rightarrow \operatorname{lemma}$ \rightarrow sub-theorews to help

Predicate Logic: Exercise 2

Consider the following predicate:

$$
\exists x, y \bullet x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge x^{*} y>0
$$

Choose all statements that are correct.

1. It is a theorem, provable by $(5,4)$.

$$
\lambda 5 \in \mathbb{N} \wedge 4 \in \mathbb{N}
$$

1 . It is a theorem, provable by $(2,3)$. a, a a

2. It is a theorem, provable by $(2,3)$.
3. It is not a theorem, witnessed by $(5,0)$. $\frac{|-2 *-3>0|}{T}$
4. It is not a theorem, witnessed by $(12,-2)$.
5. It is not a theorem, witnessed by $(12,13)$.

Logical Quantifications: Conversions

$$
\begin{aligned}
& R(x): x \in 4315 \text { _class } \\
& P(x): x \text { receives A+ }
\end{aligned}
$$

$$
\begin{aligned}
& (\forall X \cdot R(X) \Rightarrow P(X)) \stackrel{\equiv}{\Leftrightarrow} \neg(\exists X \cdot R(X) \wedge \neg P(X)) \\
& \text { Equational Sryle } \\
& \forall x \cdot R(x) \Rightarrow P(x){ }^{Q(x)} \\
& \equiv\left\{A x \text { riom: } \forall x \cdot \theta(x) \equiv \frac{1(\exists x \cdot \neg \theta(x)\}}{}\right. \\
& \frac{\neg(\exists x \cdot \neg(R(x) \Rightarrow P(x)))}{\equiv\{\text { Known: } p \Rightarrow q \equiv \neg p \vee q\}} \\
& \neg(\exists x \cdot \neg(\neg R(x) \vee P(x))) \\
& \equiv\{\text { de Morgan: } 7(p, q) \equiv \text { Tp人 } 1 q\} \\
& \neg(\exists x \cdot \neg 7 R(x) \wedge \neg P(x)) \\
& \equiv \begin{array}{l}
\text { \{doulde negation: } 17 P \equiv P\} \\
\neg(\exists x . \quad R(x) \wedge \neg P(x))
\end{array} \\
& (\exists X \bullet R(X) \wedge P(X)) \Leftrightarrow \neg(\forall X \bullet R(X) \Rightarrow \neg P(X))
\end{aligned}
$$

Lecture 6 - January 26

Model Checking

Introduction

Linear-time Temporal Logic (LTL): Syntax

Announcement

- Lab1 Part 2 tutorial videos released
+ Help: Scheduled Office Hours \& flexible TA hours
$+\approx 2$ hours
* debugging using labels, error trace, state graph
* PlusCal vs. Auto-Translated TLA+ Predicates
- Optional Textbook for Model Checking and Program Verification Logic in Computer Science:
Modelling and reasoning about systems by M. Huth and M. Ryan

Use of Model Checking in Industry

Pentium FDIV bug: https://en.wikipedia.org/wiki/Pentium_FDIV_bug

The Pentium FDIV bug is a hardware bug affecting the floating-point unit (FPU) of the early Intel Pentium processors. Because of the bug, the processor would return incorrect binary floating point results when dividing certain pairs of high-precision numbers.

In December 1994, Intel recalled the defective processors ... In its 1994 annual report, Intel said it incurred "a \$475 million pre-tax charge ... to recover replacement and write-off of these microprocessors."

In the aftermath of the bug and subsequent recall, there was a marked increase in the use of formal verification of hardware floating point operations across the semiconductor industry. Prompted by the discovery of the bug, a technique ... called "word-level model checking" was developed in 1996. Intel went on to use formal verification extensively in the development of later CPU architectures. In the development of the Pentium 4, symbolic trajectory evaluation and theorem proving were used to find a number of bugs that could have led to a similar recall incident had they gone undetected.

Formal Verification: Proof Based vs. Check Based

Temporal $\log i C$

- Syntax : Stucture
- semantils: meanang
\rightarrow (1) how to expess
(2) how to check
(3) when the check faileds
 how to riteppet the trunor tacle

Operator Precedence
(1)

$$
\begin{aligned}
& F \phi_{2} \Rightarrow \phi_{2} \\
& L_{1}^{(a)} \underset{{ }_{\text {not what (1) means }}^{F\left(\phi_{1} \Rightarrow \phi_{2}\right)}}{ } \text { 止) }\left(F \phi_{1}\right) \Rightarrow \phi_{2}
\end{aligned}
$$

$X, F, G \quad 1 *$ mang $\langle\pi<$ op $* /$
$U, W, R \quad 1 *$ brany $\langle\mathbb{K}$ op */

$$
\left.\begin{array}{l}
7 \\
\hat{v} \\
\Rightarrow
\end{array}\right] \log \text { lial op. }
$$

	$X_{p} \Rightarrow q$	
Letter	symmbol	
X	\bigcirc	$\frac{X \phi}{\prime \prime \prime}$
F	$>$	$O \phi$
G	\square	$F G \phi$
		$\Delta \square \phi$

Lecture 7 - January 31

Model Checking
Practical Knowledge about Parsing
Operator Precedence
Drawing Parse Trees
Left-Most Derivation (LMD)

Announcement

- Lab Part 2 tutorial videos released
+ Help: Scheduled Office Hours \& flexible TA hours
$+\approx 2$ hours
* debugging using labels, error trace, state graph
* PlusCal vs. Auto-Translated TLA+ Predicates
- Optional Textbook for Model Checking and Program Verification Logic in Computer Science:
Modelling and reasoning about systems by M. Huth and M. Ryan
- Written Test 1 approaching...

Assumption: Operator precedence considered first before the CFG.

Interpreting a Formula: Parse Trees $(1) \quad \begin{array}{r}\text { top down: } \\ \text { rot } \rightarrow \text { leaves }\end{array}$

Interpreting a Formula: Parse Trees (1) | top down: |
| :---: |
| not \rightarrow leaves |

$5<2 \Rightarrow 7 / 4>2$

$$
<_{\perp \rightarrow \perp}^{\infty} x
$$

(no evaluation should be done)

- syntax
- semantics
\rightarrow only moles sense
PT

Interpreting a Formula: Parse Trees (2)

$p \wedge q \equiv q \wedge p$ but different $P T s$.
Given two formula strings fl and f_{2}
different speltags.
(1) If $f \mid \neq f_{2}$, but $f l$ and +2 have the same parse tree, $f l$ and $f z$ ave considered
$F_{p} \wedge G q \Rightarrow p U_{r}$
(1)FpO^(Gq) $\Rightarrow\left(p \cup_{r}\right)$
(1) part of the input string to force some order of siteppetation.
(2) parentheses are omitted in PTs.

Interpreting a Formula: Parse Trees (3)

ϕ :: $=$	$\begin{aligned} & \mathrm{T} \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

Interpreting a Formula: Parse Trees (4)

$F p \wedge((G q \Rightarrow p) U r)$

Interpreting a Formula: LMD (1)

$$
\begin{aligned}
& F P \wedge G q \Rightarrow P U r \\
& \text { is doand } \quad \phi \rightarrow \text { bit-mose }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nox-teminal } \\
& \text { lot wost mpatication } \\
& \text { nontemical } \\
& \Rightarrow \phi \wedge \phi \Rightarrow \phi \\
& \Rightarrow F \phi \wedge \phi \Rightarrow \phi \\
& \Rightarrow F p \wedge \varnothing \Rightarrow \varnothing
\end{aligned}
$$

(to be contūued...).

Lecture 8 - February 2

Model Checking

Comparison: Parse Trees, LMDs, RMDs
Deriving Subformulas
Labelled Transition System (LTS)

Interpreting a Formula: LMD (2)

	$\begin{aligned} & T \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

Interpreting a Formula: LMD (3)

$F p \wedge(G q \Rightarrow p U r)$

Interpreting a Formula: LMD (4)

$F p \wedge((G q \Rightarrow p) U r)$

Interpreting a Formula: RMD (1)

ϕ :: $=$	$\begin{aligned} & \mathrm{T} \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

Interpreting a Formula: RMD (2)

	$\begin{aligned} & \top \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

Interpreting a Formula: RMD (3)

$\phi \quad:=$	$\begin{aligned} & T \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

Interpreting a Formula: RMD (4)

	$\begin{aligned} & \mathrm{T} \\ & \perp \\ & p \\ & (\neg \phi) \\ & (\phi \wedge \phi) \\ & (\phi \vee \phi) \\ & (\phi \Rightarrow \phi) \\ & (\mathbf{X} \phi) \\ & (\mathbf{F} \phi) \\ & (\mathbf{G} \phi) \\ & (\phi \mathbf{U} \phi) \\ & (\phi \mathbf{W} \phi) \\ & (\phi \mathbf{R} \phi) \end{aligned}$	

$F p \wedge((G q \Rightarrow p) U r)$

Interpreting a Formula: PT vs. LMD vs. RMD

subtree: $F p \wedge G q$

Instead, brackeet strighs
Deriving Subformulas from a Parse Tree obtazied fan silbtenes.

Given a PT: Enumerate all subformalas:

$$
(F(p)) \wedge(G(q))
$$

Context-Free Grammar (CFG): Exercise

Is the following CFG ambiguous?
Statement \rightarrow if Expr then Statement
if Exp then Statement else Statement
Assignment

Example:
if Expr1 then if Expr2 then Assignment 1 else Assignment

Context-Free Grammar (CFG): Exercise

Is the following_CFG ambiguous?

Statement	\rightarrow	if Expr then Statement
	\mid	if Expr then Statement else Statement
	\mid Assignment	
	\ldots	

Example: A Possible Semantic Interpretation?
 if Expr1 then if Expr2 then Assignment1 else Assignment2

Context-Free Grammar (CFG): Exercise

Is the following_CFG ambiguous?

Statement \begin{tabular}{ll}
$\rightarrow \quad$ if Expr then Statement

$|$| if Expr then Statement else Statement |
| :--- |

\& Assignment
\end{tabular}

Example: A Possible Semantic Interpretation?
if Expr1 then if Expr2 then Assignment1 else Assignment2

Labelled Transition System (LTS)
|abel ling function

e.g. $P=\{x>0, x>4\}$
on states.
(s,
Q. Formulate deadlock freedom:

From any state, it is always possible to make progress.
(5.) $\forall s . s_{\underline{s}} \cdot s \in S \Rightarrow\left(\exists s^{\prime} \cdot s^{\prime} \in S \wedge \underset{x \angle(S) \neq \varnothing}{\left.\left(S, s^{\prime}\right) \in \vec{\prime}\right)}\right.$

$$
\begin{aligned}
& \rightarrow \in S \leftrightarrow S \\
& \rightarrow \in S \rightarrow S
\end{aligned}
$$

(S) 15
\rightarrow So

$$
\left\{\left(\underline{S_{0}},\left(S_{1}\right),\left(\underline{S_{0}}, \theta_{3}\right)^{r}\right\}^{\left(50, S_{0}\right)}\right.
$$

not a functan, a velation!

Lecture 9 - February 7

Model Checking
Examples: LTS Formulation Paths, Unwinding All Possible Paths Path Satisfaction: X, G, F

Announcements

- Lab2 released
- WrittenTest 1 coming
\rightarrow cover until and incluclang today
+ some left-over excmples
(to be frivished withon fust 20 min on Thursckiy).

Labelled Transition System (LTS)
|abel ling function

e.g. $P=\{x>0, x>4\}$
on states.
(s,
Q. Formulate deadlock freedom:

From any state, it is always possible to make progress.
(5.) $\forall s . s_{\underline{s}} \cdot s \in S \Rightarrow\left(\exists s^{\prime} \cdot s^{\prime} \in S \wedge \underset{x \angle(S) \neq \varnothing}{\left.\left(S, s^{\prime}\right) \in \vec{\prime}\right)}\right.$

Labelled Transition System (LTS): Formulation \& Paths

Assume: $P=\{p, q, r\}$
So satiates p and q
(Tunpicctiy, r as not satistrod)

$$
\begin{aligned}
M & =(S, \rightarrow, L) \\
S & =\left\{S_{0}, S_{1}, S_{2}\right\} \\
& \rightarrow=\left\{\left(S_{0}, S_{1}\right) ;\left(S_{0}, S_{2}\right),\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\sqrt{1}, S_{0}\right) ;\left(\sqrt{1}_{1}, \sqrt{2}\right) \text {, } \\
& \left.\left(J_{2}, S_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { sitpeth on stapath stan path } \\
& L=\left\{\left(S_{0},\{p, q\}\right) ;\right. \\
& \left(S_{1},\{q, r\}\right)_{5} \\
& \left(s_{2}=\{r 3)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\pi^{3} & =S_{0} \rightarrow \sqrt{1} \rightarrow J_{0} \rightarrow \sqrt{1} \rightarrow \cdots \\
\pi & =S_{1} \rightarrow \delta_{2} \rightarrow \sqrt{3} \rightarrow \sqrt{4} \rightarrow I_{5} \rightarrow \\
\left(\pi^{2}\right)^{3} & =S_{4} \rightarrow S_{5} \rightarrow \cdots \\
& =\pi^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \pi=\underset{x_{1}}{\pi=S_{0}} \rightarrow \underset{S_{1}}{S_{1}} \rightarrow S_{S_{2}} \rightarrow S_{S_{3}} \rightarrow \underset{S_{5}}{S_{0}} \rightarrow \underset{S_{6}}{S_{1}} \rightarrow \cdots \\
& \pi^{1}=\pi \\
& \pi^{2}=S_{1} \rightarrow S_{0} \rightarrow S_{1} \rightarrow S_{0} \rightarrow S_{1} \rightarrow \cdots
\end{aligned}
$$

Path Satisfaction: Logical Operations
A path satisfies a proposition
if its initial state ("current state") satisfies it.
 \rightarrow 新t

$$
\rightarrow \mathrm{Si}_{\mathrm{i}-1} \rightarrow \mathrm{si}_{\mathrm{i}+1} \rightarrow \cdots
$$

$$
\text { e.g. } \pi=\left(\sqrt{b} \rightarrow \Omega_{2} \rightarrow \sqrt{2} ?\right.
$$

$$
\pi \vDash p
$$

$$
\pi \not \equiv r
$$

$$
\begin{aligned}
& \xrightarrow{\left(S_{1}\right) \rightarrow} \rightarrow \\
& \text { (IT) } \vDash \mathrm{p}
\end{aligned}
$$

$$
\begin{aligned}
& \pi \vdash \perp \perp \Leftrightarrow \text { satisfies. } \pi \mid \text { fincrim } \\
& \pi \vDash \neg \phi \Leftrightarrow \neg(\pi \vDash \phi) \\
& \pi \vDash \grave{\phi} 1 \wedge \phi_{2} \Leftrightarrow \pi k \phi_{1} \wedge \pi k \phi_{2} \\
& \pi \vDash \phi 1(\mathrm{~V}) \phi 2 \\
& \pi \vDash \phi 1 \Theta \phi 2
\end{aligned}
$$

Path Satisfaction: Temporal Operations (1)
A path satisfies $X \phi$
if the next state (of the "current state") satisfies it.

$$
\pi \vDash x_{\phi} \Leftrightarrow \pi^{2} \vDash \phi
$$

$$
\text { * } \quad \pi^{3}
$$

Q. What is $\pi 3 \vDash X$ p checking?

Path Satisfaction: Temporal Operations (2)
A path satisfies $G_{\phi}{ }^{6}$
Global
if the every state satisfies it.

Formulation (over a path)

$$
\pi \vDash G \phi \Leftrightarrow \forall i \cdot \tau \geqslant 1 \Rightarrow \pi^{\tau} \vDash \phi
$$

Path Satisfaction: Temporal Operations (3)
A path satisfies Ff future
if some future state satisfies it.

Formulation (over a path)

$$
\pi \vDash F \phi \Leftrightarrow \exists \bar{\tau} \cdot \tau \geqslant 1 \wedge \pi^{\tau} k \phi
$$

Lecture 10 - February 9

Model Checking

Path Satisfaction vs. Model Satisfaction Unary Temporal Operators: X, G, F

Announcements

- Labl solution coming soon!
- Lab2 released
- WrittenTest 1 guide \& example questions released + Verify EECS account on a WSC machine
+ Verify PPY account and Duo Mobile on eClass
- Review session on Monday? 1pm or 2pm?

Satisfactor velations
(1) $\underset{p a+h}{\pi} \vDash \phi$
(2)

$$
\begin{aligned}
& \frac{S, M}{}=\phi \\
& \text { stave model } \\
& \text { sed to convither foom }
\end{aligned}
$$ all π statiag form s.

Path Satisfaction: Logical Operations
A path satisfies a proposition
if its initial state ("current state") satisfies it.

Path Satisfaction: Temporal Operations (1)
A path satisfies $X \phi$
if the next state (of the "current state") satisfies it.
 state

"Current state" Formulation (over a path)
(〒) $F \chi \phi \Leftrightarrow \pi^{2} \vDash \phi$

$$
\Leftrightarrow \pi^{4} \vDash P_{\pi^{3}} \Leftrightarrow p \in L(S 4)
$$

Q. What is $\pi 3) \vDash X$ p checking?

Model Satisfaction
Given:

- Model $M=(S, \rightarrow, L)$
- State $S \in S$
- LTL Formula ϕ
M s $s \neq \phi$ iff for every path π of M starting at $s, \pi \vDash \phi$.
$s \vDash \varnothing$
Formulation (over all paths).
$\begin{aligned} & \text { model satisfaction }\end{aligned} \rightarrow \pi=S \rightarrow$ (a wired path w.v.t. M)
$s(-) \phi \Leftrightarrow \pi \cdot \pi$ starts with $s \Rightarrow \pi \vDash \phi$
How to prove vs. disprove $M, s \vDash \phi$?
(1) To prove $S \vDash \varnothing$, need to show for every possible path π,
(2) To disprove $s \mid=\phi$, paddle a waitress $\pi=s \rightarrow \cdots, \pi \notin \phi$.

Model vs. Path Satisfaction: Exercises (1.1)

Recall: $\pi \vDash p \Leftrightarrow p \in L\left(s_{1}\right)$
Say: $^{\boldsymbol{\pi}}=\mathbf{s}_{0} \rightarrow \mathbf{s}_{1} \rightarrow \mathbf{s}_{2} \rightarrow \mathbf{s}_{2} \rightarrow \ldots$
$\pi \vDash T(T)$
$\pi \not \vDash \perp(T)$
$\pi \vDash p \wedge q(T)$
$\pi \vDash p \vee q(T)$

$$
\begin{aligned}
& \pi=(\mathbb{P})^{\top} \Rightarrow(9)(T) \\
& \pi=r(F)
\end{aligned}
$$

$$
\pi \underset{F}{r} \Rightarrow p \wedge q \wedge r(T)
$$

Exercise: What if we change the LHS to π^{2} ?

Model vs. Path Satisfaction: Exercises (1.2)

$s \vDash p \Leftrightarrow$ all π starting at $s, \pi \vDash p$
$S_{0}=T$
(1)
(1) all possible paths

So $\neq \perp$
(1)
starting from do
$S_{0} \vDash P \wedge q$
$S_{0} \vDash p \vee q$

$$
\begin{aligned}
& S_{1}=\stackrel{F}{P} \Rightarrow q \\
& \text {. } S_{0} \vDash p \Rightarrow q \\
& -S_{0} \vDash r \\
& S_{1} 1=V T \\
& { }^{\prime} S_{0} \vDash r \Rightarrow p \wedge q \wedge r
\end{aligned}
$$

(2) $\begin{aligned} & \pi \vDash P \Leftrightarrow \\ & P \in L\left(\frac{S}{\Lambda_{0}}\right) \\ &\end{aligned}$

Exercise: What if we change the LHS to s_{1} ?

Model vs. Path Satisfaction: Exercises (2.1)

Recall: $\pi \vDash X \phi \Leftrightarrow \pi^{2} \vDash \phi$
Say: $\pi=\left(s_{0}\right) \rightarrow \frac{\mathbf{s}_{1}}{2 d \text { state. }} \rightarrow \mathbf{s}_{2} \rightarrow \ldots$
$\pi \vDash \underline{X} \underline{T^{2}} \vDash \pi^{2}(T$
$\pi \not \equiv X \perp(T)$
$\cdot \pi \vDash X(q \wedge r) \Leftrightarrow \pi^{2} \vDash q \wedge r(T)$
$\pi \vDash X q \wedge r \quad F$
(7) $\overline{\pi^{2} k q}$
(F) $\pi \vDash X q \Rightarrow r \Leftrightarrow \epsilon_{2}$
iso docsinsify

$$
\frac{\stackrel{\leftrightarrow}{\pi}^{2} k q}{\pi^{2} ?(T)} \Rightarrow \frac{\pi k r}{(F)}
$$

Exercise: What if we change the LHS to π^{2} ?

Model vs. Path Satisfaction: Exercises (2.2)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$ need toconsall all paths stating fam so

$$
\begin{aligned}
& \mathbf{s}_{0}=\boldsymbol{X} T(T)>\text { possible nerct states } \\
& \text { So } \neq X \perp(T \\
& s_{0} \vDash X(q \wedge r) E \text { Witness: } \int_{0} \rightarrow S_{z} \rightarrow \ldots \\
& \begin{array}{l}
s_{0}=X q \wedge r(F) \text { Witness: }:\left(S_{0} \rightarrow S_{1} \rightarrow \ldots\right. \\
s_{0} \equiv X(q \Rightarrow r)(1)
\end{array} \\
& s_{0}=X q \Rightarrow r> \\
& \text { try! (10) dials: So } \rightarrow \text { Sc } \rightarrow \ldots
\end{aligned}
$$

Exercise: What if we change the LHS to s_{1} ?

Model vs. Path Satisfaction: Exercises (3.1).

To disprove path sareifaction,
$\pi \vDash G \phi \Leftrightarrow \forall i \bullet i \geq 1 \Rightarrow \pi^{\prime} \vDash \phi$
Say: $\left.\pi=s_{0} \rightarrow s_{1}\right) \rightarrow s_{2} \rightarrow s_{2} \rightarrow \ldots$
$\boldsymbol{\pi} \vDash \boldsymbol{G} \top(T)$
$\boldsymbol{\pi} \not \underline{\underline{G}} \perp(T)$

$$
\pi \vDash G \neg(p \wedge r) \rightarrow 1 p \vee
$$

$$
S_{1} \rightarrow S_{2} \rightarrow S_{2} \rightarrow \cdots E G r
$$

Exercise: What if we change the LHS to (112?

Model vs. Path Satisfaction: Exercises (3.2).

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
$S_{0} \xlongequal{\swarrow}=G T \quad T$
$S_{0} \not \neq \mathbf{G}(\square)$
$S_{0} \xlongequal{\square} G(p \wedge r) \xrightarrow{\neg P} \stackrel{\neg \gamma}{\rightarrow}$ all paths starting fou So cover all
$\left.s_{2}\right)=\boldsymbol{G r}$ stater

$$
\begin{aligned}
& \text { 50 } \\
& \frac{18}{7}
\end{aligned}
$$

Exercise: What if we change the LHS to s_{1} ?

Model vs. Path Satisfaction: Exercises (4.1)

$$
\begin{aligned}
& \pi \vDash F \phi \Leftrightarrow \exists i \bullet i \geq 1 \wedge \Pi^{i} \vDash \phi \\
& S_{\text {say }}: \pi=S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow S_{2} \rightarrow \ldots
\end{aligned}
$$

$\pi \vDash F T_{0} \quad \square$
$\pi \nRightarrow F(\perp) \quad(1)$
$\pi \vDash F \neg(p \wedge r) \quad \tau$
$\pi \vDash F \underset{\sim}{r} \longrightarrow$ ail states in $\pi<$ satisfies ipviv
$\pi \triangleq F(q \wedge r)$
wetapss: S_{1} wetness: S_{1}
Exercise: What if we change the LHS to π^{2} ?

Model vs. Path Satisfaction: Exercises (4.2).

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
$\mathbf{s}_{\mathrm{o}} \vDash \mathbf{F} \boldsymbol{F} \mathrm{T}$
So $\neq F \perp(T)$

$s_{0} \vDash F r(T)$
$S \vDash F \varnothing$

$$
(\pi=s \rightarrow \ldots) S_{0}=\frac{F(q \wedge r)}{\tau}
$$

\rightarrow for each path starting from S, F Wines: $S o \rightarrow S_{2} \rightarrow \mathcal{I}_{2} \rightarrow$.. there's one state satisfying ϕ. (que were screstived)
Exercise: What if we change the LHS to s_{1} ?

Sunday, February 12

Written Test 1 Review

 \qquad
state in pi.

$$
\pi=s \rightarrow \cdots
$$

(1) path - path starts with state $S \Rightarrow$
$\pi ® F \phi$

$$
\begin{aligned}
& \downarrow \\
& \text { to disprove this } \\
& \text { to }
\end{aligned}
$$

need@withess path

Prove vs. Pasprove model satisfaction of G.

Lecture 11 - February 28

Model Checking

Path Satisfaction: Nested LTL Operators FG vs. F => FG

Announcements

- Released: WrittenTest 1, Lab2 solution
- To be released:
+ ProgTest 1 Guide (by the end of Wednesday)
+ ProgTest 1 practice questions (by Thursday class)

$$
\begin{aligned}
& \text { - I~2 algorithms } \\
& \text { - condistaris, loops, tuples } \\
& \text { - assertions (postandrition) }
\end{aligned}
$$

$\forall x \cdot P(x)$ dispose: fond an x st. $7(x)$
$\exists x \cdot P(x)$
dispare:
ford all past le x st. $\mathcal{P}(x)$.

Nesting "Global" and "Future" in LTL Formulas

$$
\underline{\underline{\mathbf{s}}} \models F G
$$

Each path starting with s is s.t. eventually, ϕ holds continuously.
Q. Formulate the above nested pattern of LTL operator.

$$
* \forall \pi \cdot \pi=S \rightarrow \cdots \Rightarrow * *
$$

$$
\left.\left.\cdot j \geqslant \tau \Rightarrow\left(\pi^{\top} \vDash \phi\right)\right)\right)
$$

Q. How to prove the above nested pattern of LTL operators?
*(1) consoler all path patterns starting from $S \rightarrow$ (Induna (th scare)
**(2) And such i **(3) each state subsequent to $\tau+h$ stare saras)ips ϕ
Q. How to disprove the above nested pattern of LTL operators??

* (1) Find a wines $\pi=s \rightarrow \ldots$
* (3) there's one subseguart
** (2) Show that for each state in π. State that valuates ϕ.

Path Satisfaction: Exercises (5.1)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
$s_{0}=F G \mathbf{~ r a l s e}$
Witness: So $\rightarrow \mathrm{S}_{1} \rightarrow \mathrm{~S}_{0} \rightarrow \mathrm{~S}_{1} \rightarrow \cdots$
 an not
Tho red
in path
Witness
states in who ed
$\mathbf{S o}_{0} \vDash$ FE $(\mathrm{p} \vee \mathrm{r})^{\text {get sack heres }}$ and both p and q
in all suns
possantiny $p s$.
(1) $\mathrm{So}_{\mathrm{o} \rightarrow \mathrm{S}_{2} \rightarrow \mathrm{~S}_{2} \rightarrow \text { TM e } \mid}$ are vedated
(2) $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \sqrt{2} \rightarrow \ldots$
(3) $50 \rightarrow \sqrt{4} \rightarrow$ So $_{0} \rightarrow \sqrt{1} \rightarrow$..

Exercise: What if we change the LHS to S_{2} ?

$$
\begin{aligned}
& s \vDash G \phi \\
& S \neq F G \phi \\
& \mathbb{S}_{S \phi}
\end{aligned}
$$

Nesting "Global" and "Future" in LTL Formulas

$$
S \vDash F \phi_{1} \Rightarrow F G \phi_{2}
$$

Each path π starting with s is st. if eventually $\phi 1$ holds on π, then $\phi 2$ eventually holds on π continuously.
Q. Formulate the above nested pattern of LTL operators.

$$
\begin{aligned}
& \forall \pi \cdot \pi=S \rightarrow \cdots \Rightarrow
\end{aligned}
$$

Q. How to prove the above nested pattern of LTL operators?
Q. How to disprove the above nested pattern of LTL operators?

Lecture 12 - March 2

Model Checking
Path Satisfaction: Nested LTL Operators
$\boldsymbol{F} \boldsymbol{\phi} 1 \Rightarrow \boldsymbol{F} \boldsymbol{G}$ \$2

Nesting "Global" and "Future" in LTL Formulas

Each path π starting with s is st. if eventually $\phi 1$ holds on $\dot{\pi}$, then $\phi 2$ eventually holds on π continuously.
Q. Formulate the above nested pattern of LTL operators.

$$
\begin{aligned}
& \text { * } \forall \pi \cdot \pi=S \rightarrow \ddot{\pi}_{1} \Rightarrow \\
& \left(\exists{\overline{i_{1}}} \cdot \tau \geqslant 1 \wedge \pi^{\tau_{1}} \vDash \phi_{1}\right) \\
& \left(\exists \imath_{2} \cdot \tau_{2} \geqslant \mid \Lambda\left(\forall j \cdot j \geqslant \overline{i n}_{2} \Rightarrow\right)\right)
\end{aligned}
$$

Q. How to prove the above nested pattern of LTL operators?
(1) Consider all path patters (2) a. $T \Rightarrow T$ b. $F \Rightarrow-C$. $\Rightarrow T$
Q. How to disprove the above nested pattern of LTL operators?
(1) Find a witness path
(2) $T \Rightarrow F$.
alt to $*: S 2$ satisties $7 q \wedge r_{\text {s }}$ ther fom $\left.s^{2}\right\}$
Path Satisfaction: Exercises (5.2)
(4) $S_{0} \rightarrow S_{1} \rightarrow S_{0} \rightarrow \int_{1} \rightarrow \cdots \rightarrow S_{2} \rightarrow \cdots$
(5) $S_{0} \rightarrow \sqrt{1} \rightarrow \sqrt{0}^{0} \rightarrow \sqrt{2}^{2} \rightarrow \cdots \rightarrow S_{0} \rightarrow \sqrt{2}_{2} \rightarrow$

(2) $S_{0} \rightarrow \sqrt{\Omega_{2}} \rightarrow \sqrt{2} \rightarrow \cdots$.
ζ scerties of $A r$
$\rightarrow F(7 q \wedge r)$ is (T)
staitring from $\sqrt{2}$. Gr as satafied.
Exercise: What if we change the LHS to S_{2} ?
$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
(2) So $\rightarrow S_{1} \rightarrow \Omega_{2} \rightarrow \cdots$ (exercise)
$*_{S_{0}} \vDash F(\neg q \wedge r) \Leftrightarrow F G r$
(1) So $\rightarrow S_{1} \rightarrow S_{0} \rightarrow S_{1} \rightarrow \cdots$
\rightarrow no state on this path satioftes if $\wedge r$ $\rightarrow F(7 q \wedge r)$ 万 fate

$$
\text { false } \Rightarrow P \equiv \text { Tue }
$$

Wierness: ${ }^{\top}$ So $\rightarrow S_{1} \rightarrow S_{0} \rightarrow \mathcal{S}_{1} \rightarrow \cdots$
(T) $\Rightarrow(T)=(T) \xrightarrow{\rightarrow}$ satnties $F(q q \vee r): S_{1}$ \rightarrow volates: $F G$ does not dops not
saticisy r.
$F G \phi$
. 0 o66 .
(O) Φ

Lab2 Solution: getAllSuffixes (V2: Tuple of Tuples)

```
-------------------------- MODULE getAllSuffixes_v2
EXTENDS Integers, Sequences, TLC
CONSTANT input input vars will be constants
ASSUME Len(input) >0
(*
    --algorithm getAllSuffixes_v2 {
    variable result = input, postfixSoFar = <<>>, i = Len(input) - 1;
    {
        postfixSoFar := (<<).nput[Len(input)] >>>
        result[Len(input)] := postfixSoFar;
        while (i > 0) {
            postfixSoFar := <<input[i]>> (0)postfixSoFar;
            result[i] := postfixSoFar;
    i i := i - 1;].
        assert \A j \in 1..Len(input): Len(result[j]) = Len(input) - j + 1;
```



```
                [23,46,69]
                        result:
                [[23, 46, 69],
                [46,69],
                                [69]](G)]
                                32 2
                                3) 
        assert(\A) j \in 1..Len(result): (\A) k \in 1..Len(result[j]): result[j][k] = input[j - 1 + k]);
    }
}
*)
```

(*
--algorithm getAllSuffixes_v2 \{
variable result $=$ input, postfixSoFar $=\ll \gg, i=$ Len(input) -1 ;
\{
postfixSoFar := <<input[Len(input)]>>;
result[Len(input)] := postfixSoFar;
while (i > 0) \{
postfixSoFar :=<<input[i]>> \o postfixSoFar; USD $]^{\text {-[69] }}$

$$
\mathrm{i}:=\mathrm{i}-1
$$

\};

\}
\}
*)
(J)
an Item tu come result taple

$$
\begin{aligned}
& \frac{1}{2} k=1 \rightarrow 2 \rightarrow 3 \quad(\operatorname{Len}(\text { result [1] }=)) \\
& 3 \quad k=1 \rightarrow 2
\end{aligned}
$$

Lab2 Solution: getRightShifts

$B \Rightarrow P$

Assertion: explicit about the variables that can be used.

$$
\langle\langle 1,2,3\rangle\rangle|0 \ll 4,5,6\rangle\rangle
$$

output I lo 《I》>

Lecture 13 - March 14

Model Checking
Model Satisfaction: Nested LTL Operators $\boldsymbol{G F} \phi, \boldsymbol{G F} \phi \Rightarrow \boldsymbol{G F} \phi$
LTL Operators: Until, Weak Until, Release

Announcements

- ProgTest 1 result to be released by Friday
-Labs to be released by the end of Thursday

Nesting "Global" and "Future" in LTL Formulas
s®GF $\otimes \begin{aligned} & \text { infinitely } \\ & \text { ital }\end{aligned}$

$$
\begin{aligned}
& \text { (1) 中 should "almost" ways awe }
\end{aligned}
$$ (2) platarie to on y state c colt wait

Each path starting with s is st. continuously, \ddagger eventually holds. molefinicely for ϕ to
Q. Formulate the above nested pattern of LTL operator. be twp
*

Q. How to prove the above nested pattern of LTL operators?
(1) consider path patterns (2) argue for each state on the path p.
Q. How to disprove the above tested pattern of LTL operators?

* Give a witness path $\pi \quad G+\phi$ that satisfies ϕ.
** Give a witness state on π, say $s^{\prime} \$^{* * *} \phi^{\text {relative to }}$ is never tue. π_{3} ϕ is never true.
(1) GF Φ

$$
\begin{aligned}
& \text { (2) } \underline{G} \underline{\phi} \\
& \left(\begin{array}{ll}
\text { (2) } & \Rightarrow \\
\text { (1) } \\
\text { (1) } & \Rightarrow \\
\text { (2) }
\end{array}\right)
\end{aligned}
$$

Model Satisfaction: Exercises (6.1)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$

$$
\begin{aligned}
& s_{0} \vDash G F p^{\underline{\text { lfalse }}} \\
& \stackrel{\mid \sqrt{S_{0}}}{p} \rightarrow \underset{\neg p}{\mid \sqrt{S_{2} \mid}} \rightarrow \underset{\sim}{\sqrt{S_{2}} \mid} \rightarrow \cdots
\end{aligned}
$$

Path Patterns
(1 So $\rightarrow S_{1} \rightarrow S_{0} \rightarrow S_{1} \rightarrow \cdots$

$$
s_{0}=G F(p \vee q)^{\left(f_{\text {flase }}\right)} \quad \text { iSolk }(p, r)
$$

(2) $S_{0} \rightarrow S_{2} \rightarrow S_{2} \rightarrow$
(5) $S_{0} \rightarrow S_{1} \rightarrow S_{0} \rightarrow \mathcal{S}_{2} \rightarrow(p \vee q)$
(3) $S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \cdots$
(4) $\mathcal{S}_{0} \rightarrow \sqrt{2} \rightarrow \sqrt{S}^{2} \rightarrow \sqrt{2}^{\cdots} \rightarrow \sqrt{1} \rightarrow \sqrt{2} \rightarrow \sqrt{2} \rightarrow \ldots$

Exercise: What if we change the LHS to s_{2} ?

Model Satisfaction: Exercises (6.2)

$$
\rightarrow \text { So } \vDash G F p \Rightarrow G r \text { (False }
$$

Just. For $S_{0} \rightarrow S_{1} \rightarrow$ -

$\forall \dot{\pi} \cdot \pi=S \rightarrow \cdots \Rightarrow C \leftarrow$

$$
\begin{aligned}
& \quad(\forall[\cdots \cdots \Rightarrow \\
& \left.\quad \exists j \cdots \wedge \pi^{\top} k p\right) \\
& \Rightarrow\left(\forall \tau \cdots \Rightarrow\left(\exists_{j} \cdot \cdots \wedge \pi^{\top} k r\right)\right)
\end{aligned}
$$

(1) assume GF P: only path to consider (2) In that path: GF r tees $S_{0} \rightarrow S_{1} \rightarrow S_{0} \rightarrow$. sO \vDash GI $r \Rightarrow$ FF P

Wetness

GE r is True but GF P is false
Exercise: What if we change the LHS to s_{2} ?

Path Satisfaction: Temporal Operations (4)
$\pi l=\phi 1$ (1 qt 2
θ_{1} : Is it ok
There is some future state satisfies 中2, and until then, all states satisfy (11).

x that $G \phi_{1}$ but $\leftarrow G \neg \phi_{2}$? Is it ok that $G \phi_{1}$ and $F \phi_{z}$?
Formulation (over a path).

$$
\pi \vDash \phi_{1} U \phi_{2} \Leftrightarrow\left(\exists_{\tau} \cdot \tau \geqslant 1 \wedge\left(\begin{array}{l}
\left.\pi^{\tau}\right)=\left(\phi_{2}\right) \\
\Lambda \\
\left(\forall J \cdot \mid \leq \jmath \leq i-1 \Rightarrow \pi^{\top} \vDash \underline{\phi_{1}}=\right.
\end{array}\right)\right.
$$

Path Satisfaction: Temporal Operations (5)

$$
\pi \mid=\phi 1 \bigvee \$ 2
$$

Q1. Is it ok
(1) If there is ever a future state that satisfies $\phi 2$, then that $G \phi_{1}$.
but $\frac{\sqrt[G]{G}+\phi_{2}}{\mathrm{ok}}$. until then, all states satisfy $\phi 1$.
(2) Giternvibe, $\phi 1$ must always be the case.

Qr. Is it ok that $G \phi_{1}$ and $\checkmark \cdot F \phi_{2}$?

$$
\phi_{1} w \phi_{2} \Leftrightarrow \phi_{1} u \phi_{2}
$$

$$
{ }^{v}\left(\forall k \cdot k \geqslant 1 \Rightarrow \pi^{k} k \phi_{1}\right)
$$

$\phi_{1} u \phi_{2}$

$$
\underline{G}
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
p & p \Rightarrow & q \\
q & z & \vdots \\
\text { stronger } & \text { weaker }
\end{array}\right. \\
& \text { satisfyrg values } \\
& \{x \mid P(x)\} \subseteq\{x \mid q(x)\}
\end{aligned}
$$

Path Satisfaction: Temporal Operations (6)
$\pi \mid=\phi 1 \mathbb{R} \vec{\longrightarrow} \xrightarrow{\longrightarrow} \phi_{2}$ has been holding, ϕ_{1} releases it " If there is ever a future state that satisfies $\phi 1$, then until then, all states satisfy \$2
Otherwise, $\phi 2$ must always hold (ie., never released).

Formulation (over a path)

Lecture 14 - March 16

Model Checking
LTL Examples: Until, Weak Until, Release Formulating Natural Language in LTL

Announcements

- Mar 23 class?
- ProgTest 1 result to be released by the end of Friday
- Lab3 released \rightarrow Pprre peil log'm.

WrittenTest2 example questions to be released

- Review Q\&A session: 7pm on Sunday, March 19?
cont.
U, w, R

statay for 1 not mopet tith d extan formula

Weak $Z_{n t i l} \phi_{1} w \phi_{2}$
π \qquad
 (a) ${ }^{\frac{7}{2}}{ }^{2} \cdots \cdots$ in
${ }^{(\sigma)} v^{v} \frac{\phi_{1} \phi_{1}}{12}$

$$
\frac{\phi_{2} \phi_{2}}{1} \frac{1}{2} \cdots \cdots
$$

Model Satisfaction: Exercises (7.1)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$

* $S_{2} \vDash p \cup r$ time
$\because \phi_{1} \cup \phi_{2} \Rightarrow \phi_{1} U^{N} \phi_{2}$
always tue
Tree)

$S_{0}=r \operatorname{R} p$
Wetness $S_{0} \rightarrow S_{1} \rightarrow S_{0} \rightarrow \ldots$
(1) no state that satisfies par
(2) not the case that P

Exercise: 'What if we change the LHS to \mathbf{S}_{2} ?
is always the

Model Satisfaction: Exercises (7.2)

$s \vDash \phi \Leftrightarrow$ all π starting at $s, \pi \vDash \phi$
$S_{o} \vDash(p \vee r) U(p \wedge r)^{\text {false }}$
! $p \wedge r$ is never satisfies
$S_{0}=(p \vee r) W(p \wedge r)$ tale
\rightarrow We know: (pr) W (par) fake But: (pro) is always satasfied.

$$
S_{0} \vDash(p \wedge r) R(p \vee r)
$$

days tale $S_{0} F G$ (pour)
Exercise: What if we change the LHS to S_{2} ?
Ind case of \underline{R} satisfied.

Formulating Natural Language in LTL(1) ${ }^{\frac{\text { Fix }}{} I \text { smoked } U}$ U(I was $\left.22 \wedge \ldots\right)$.
Natural Language:
I had smoked until I was 22.

Atom t: I was 22
Atom s: I smoke
Q. Is US \pm an appropriate formulation?

I smoked U

(I was 22 A
$\pi^{\bar{c}} \vDash t \stackrel{\downarrow}{\phi_{1}}$ ${ }^{x}(I$ smoked $)$)
Solution $\frac{\text { I smoked l }}{\sqrt{(1 \text { was } 221}}$

$$
\pi \vDash \phi_{1} \mathbf{U}_{\phi_{2}} \Longleftrightarrow\left(\exists i \bullet i \geq 1 \wedge\left(\begin{array}{l}
\left.\begin{array}{l}
\left.\pi \cap \vDash \phi_{2}\right) \ldots \wedge G(\cdots) \\
\wedge \\
\left(\forall j \bullet 1 \leq j \leq i-1 \Rightarrow \pi^{j} \vDash \phi_{1}\right)
\end{array}\right)
\end{array}\right)\right.
$$

Formulating Natural Language in LTL (2.1)

Natural Language:
It's impossible to reach a state where the system is started but not ready.

Assumed atoms:

- started
- ready

$$
\begin{aligned}
& G \phi \equiv \neg F \neg \phi \\
& F \phi \equiv \neg G \neg \phi
\end{aligned}
$$

$$
\text { IF }(\text { started } x \text { Tread } y)
$$

LTL Formulation

$$
\begin{aligned}
& G(T(\text { stand } n \text { made })) \\
& G(7 \text { satald } \vee \text { read } y) \rightarrow G(\text { ssarad } \rightarrow \text { read } z)
\end{aligned}
$$

Formulating Natural Language in LTL (2.2)
Natural Language:
Whenever a request is made, it will be acknowledged eventually.

Assumed atoms:

- requested
- acknowledged

LTL Formulation

$$
G(\text { requested } \Rightarrow F \text { ask. })
$$

Formulating Natural Language in LTL (2.3)
Natural Language:
An elevator traveling upwards at the ind floor does not change its direction
when it has passengers wishing to to to the Eth floor.

Assumed atoms:

- floor2, floor
- directionUp
- buttonPressed5

LTL formulation

Sunday, March 19

Written Test 2 Review

autput $[\overline{[}]<=\operatorname{artput}[\overline{[}+1]$
last $5 \mathrm{se}^{2} \mathrm{vadue}$
Q. Is thes postcondition corsect \& Complete?
input:

$$
\begin{aligned}
& -|\operatorname{syn}+\operatorname{tax}| \\
& L \text { derriable tan gronma. } \\
& \rightarrow \text { formal meannag } \\
& \text { - Correct or not? } \\
& s U t^{x} \text { is } s u\left(t_{1} G(7 s)\right) \\
& \underbrace{\left.\phi_{1} U \phi_{2}\right)}_{\text {Compare to } \underline{G F \phi} .}
\end{aligned}
$$

$$
\begin{aligned}
& p: I \text { eat } \\
& q: I g_{0} \text { to schod } \\
& \frac{\text { Ine go to shool }}{G((x q) \Rightarrow p)}
\end{aligned}
$$

$$
\begin{aligned}
& S_{0}\left(\theta G\left(G \phi_{1} \rightarrow F \phi_{2}\right)\right. \\
& \forall \pi \cdot \pi=S_{0} \rightarrow \cdots \Rightarrow \\
& \forall \tau \cdot \tau \geqslant 1 \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& S_{0}(E) \underset{=}{\underline{F}}\left(\begin{array}{lll}
\phi_{1} & U & \phi_{2}
\end{array}\right) \\
& \forall \pi \cdot \pi=S_{0} \rightarrow \cdots \Rightarrow \\
& \left.\binom{\exists \bar{\zeta} \cdot \tau \geqslant \underline{\underline{I}} \wedge}{(\exists J \cdot j \geqslant \underline{\underline{\tau}}}\right)
\end{aligned}
$$

Lecture 15 - March 28

Program Verification

Stronger vs. Weaker Assertions Total vs. Partial Correctness

Announcements

- Bonus Opportunity - Course Evaluation
- ProgTest 1: Echo (eMail, Zoom); Jackie (Office Hour)
- Lab due tomorrow
- ProgTest2
- Final Exam: Review Q\&A Sessions
\longrightarrow data sheet
\rightarrow one side out; put anything year like \leftrightarrows comp \sim fort aped $\xi^{3} \geqslant 10 p t$

Lecture

Program Verification
Correctness - Motivating Examples

Assertions: precandition, postcondition, invarantit no anthp

Preconditions P_{1} v. P_{2}
 \rightarrow pereand: for Ineear (on mppt valks) con apput echess.

Program Correctness: Example (2)

Lecture

Program Verification

Hoare Triple and Weakest Precondition

Lecture 16 - March 30

Program Verification
Weakest Precondition (WP)
WP Rules

Announcements

- Lab3 due tomorrow
- ProgTest2
lavel of difficaling \approx EECSOz/(1ozz

Hoare Triple as a Preplicate
\qquad 3
tratilly
Stanctet is follo \qquad $\operatorname{up}(S, R)$

Incowect Trograin

Lecture

Program Verification
Rules of wp Calculus

Rules of Weakest Precondition: Assignment wo calcalatron $\mathscr{w p}(x:=$ (e) $(R)=R[x:=e]$
to achiese the postiond. R,

$$
\begin{aligned}
& \{Q\} x:=e\{R\} \\
& \rightarrow Q \Rightarrow \frac{\operatorname{wop}(x:=e, R)}{R[x:=e]}
\end{aligned}
$$

via a vareable assignnment, what's the wop to

$$
\begin{aligned}
& \text { WP }(x:=23, \quad x=46) \\
& =\{\text { up ulue for }:=\} \\
& \underline{\underline{x}}=46[x:=23] \\
& =23=46 \\
& \Rightarrow \text { false acel }
\end{aligned}
$$

Correctness of Programs: Assignment (1).

$$
\begin{aligned}
& \text { What is the weakest precondition for a program } \mathrm{x}:=\mathrm{x}+1 \text { to } \\
& \text { establish the postcondition } x>x_{0} \text { ? } \\
& \{? ?\} \text { : }=x+1\left\{x>x_{0}\right\} \\
& \operatorname{\omega p}(x:=x+1)^{e}, x>x_{0} \xi \\
& =\{\text { up ale of }:=\xi \\
& x>x_{0}\left[x:=x_{0}+1\right] \\
& =x_{0}+1>x_{0} \\
& \text { any precondition } \\
& \text { will be covet } \\
& \because \text { - } \Rightarrow \text { Til }
\end{aligned}
$$

Correctness of Programs: Assignment (2).

What is the weakest precondition for a program $\mathrm{x}:=\mathrm{x}+1$ to establish the postcondition $x>x_{0}$?

$$
\{? ?\} \times:=x+1\{x=23\}
$$

Program Correctness: Revisiting Example (1)

Program Correctness: Revisiting Example (2)
--algorithm increment_by_9 \{ variable i; \{

$$
\begin{equation*}
\{\boldsymbol{Q}\} \leq\{\boldsymbol{R}\} \equiv \boldsymbol{Q} \Rightarrow w p(S, \boldsymbol{R}) \tag{*precondian*}
\end{equation*}
$$

$$
i:=i+9 ;
$$

(* postcondition *)

$$
\text { assert } i>13
$$

\}

$$
\text { argue: } \bar{\tau}>5 \Rightarrow \bar{\tau}>4
$$

Rules of Weakest Precondition: Conditionals

Correctness of Programs: Conditionals

Is this program correct?

(Step 3)
Argue: $x>0 \wedge y>0 \stackrel{?}{\Rightarrow} \omega p$
(Step 1) Formulate Hove Triple
$\{x>0 \wedge y>0\}$ Ai B then S_{1} elbe $S_{2}\{$ bigger smaller $\}$
(Step 2) Calculate ($\omega \mathrm{LPD}$ (if B then S_{1} ellie $\mathrm{S}_{2} \rightarrow$ bigger \geqslant smaller). Exictise.

$$
\begin{aligned}
& \operatorname{up}\left(\underset{\text { Shai }}{S_{1}}=\frac{S_{2}}{S_{2}},(B)\right.
\end{aligned}
$$

Correctness of Programs: Sequential Composition
Is $\{$ True $\}$ tip $:=x ; x:=y ; y:=\operatorname{tmp}\{x>y\}$ correct?
(Step 1) Calculate $\operatorname{wp}(\operatorname{tup}:=x) ; x:=y ; y:=\operatorname{tmp}, x>y)$
$=\{\operatorname{lop}$ rule for $; \xi v$

Lecture 17 - April 6

Program Verification

Contracts of Loops: Invariant vs. Variant Correctness of Loops

Announcements

- Lab4 released
- Exam guide released

Program Veriticatón

- Predicates: Stanger \Rightarrow Weaker
- Hoave Traple $\{Q\} S\{R\}$

$$
\Leftrightarrow Q \Rightarrow \omega p(S, R)
$$

(1) Show wp calalation (2) Rore

ampt tho
math ©: $=$

$$
\begin{aligned}
& =\{\text { justi fixaton }\} \equiv\{\cdots\} \text { revitew } \text { lecturp (2) of then else }
\end{aligned}
$$

Lecture

Program Verification

Contracts of Loops

Output: index i s.t. input [$]$] is max.

- Exercise. Write an assertion for the postcandition.
- Exercise Z: loop invariant.
\longrightarrow Hent: loop counter Hent: reclusion of $\underset{=}{\mathrm{J}}$ or not?

Contracts of Loops

Contracts of Loops: Example

Assume: Q and R are true

```
I(i) == (1<= i) /\ (i<= 6)
V(i)
--algoritnm loop_invariant_test
```


Specification

```
    variables i = (1) variant_pre = 0, variant_post = 0;
```


Runtime Checks

 while $i<=5$) \{ variant_pre $:=V(i) ;$ i := i + 1; variant_post := V(i); assert variant_post >= 0; assert variant_post < variant_pre; assert I(i); \} ;\}

Contracts of Loops: Violations

Assume: Q and R are true

```
I(i)== (1 <= i) /\ (i <= 6) Specification
--algorithm loop_invariant_test
    variables i = 1, variant_pre = 0, variant_post = 0;
    {
        assert I(i);
        while (i <= 5) {
            variant_pre := V(i);
            i := i + 1;
            variant_post := V(i);
            assert variant_post >= 0;
            assert variant_post < variant_pre;
            assert I(i);
        } ;
    }
                V}\geq0\wedgeV<V
```


Runtime Checks

variant: 5 - i

Contracts of Loops: Visualization
Exit condition

Previous state

Lecture

Program Verification
Correctness Proofs of Loops

Correct Loops: Proof Obligations

- A loop is partially correct if:
- Given precondition Q, the initialization step $S_{\text {init }}$ establishes LII.
\{Q\} ~ S u r e ~ \ { I \ } ~

$$
\{Q\} S_{\text {init }}\{I\}
$$

- At the end of $S_{\text {body }}$, if not yet to exit, $L I I$ is maintained.
$\{工, B\}$ Shady $\{I\}$

$$
\{\mid 1 B\} S_{\text {coy }}\{1 \mid
$$

- If ready to exit and LI I maintained, postcondition R is established.
$\neg B \wedge I \Rightarrow R$

$$
I \wedge \neg B \Rightarrow R
$$

- A loop terminates if:
- Given LII, and not yet to exit Sod maintains LV V as non-negative.
$S_{\text {init }}$
assert I(...);
while(B) \{
variant_pre := V(L...);
$S_{\text {body }}$
variant_post := V(...);
assert variant_post >= 0;
assert variant_post < variant_pre;
assert I(...);
\}
\{ R\}
$\{I \wedge B\} S_{\text {body }}\{V, 0\} \quad\{1 \wedge B\} S_{\text {body }}\{V \geq 0\}$
- Given LII, and not yet to exit, $S_{\text {body }}$ decrements LV V.

I^B\} ~ S o d ~ $\}\left\{\}<\sqrt{0}\} \quad\{I \wedge B\} S_{\text {body }}\left\{V<V_{0}\right\}\right.$

Correct Loops: Proof Obligations

$\{Q\}$

I hope you enjoyed learning with me $\frac{11}{V}$
All the best to far ?

